Welcome to Our Community

Some features disabled for guests. Register Today.

Tear down of Cubify cube 3 3D Printer + convert to RepRap

Discussion in '3D printers' started by Oderbang, Dec 6, 2015.

  1. advancedrescue

    Builder

    Joined:
    Oct 27, 2016
    Messages:
    22
    Likes Received:
    4
    My printer will be here by Monday and I'll try and get some codes
     
  2. Tom Dirriwachter

    Tom Dirriwachter Well-Known
    Builder

    Joined:
    Aug 30, 2016
    Messages:
    284
    Likes Received:
    32
    Thank you, Oderbang. This really helps a lot for people needing to get into their printer as well.

    I too am hoping something comes out of the filament counter problem.
    Do understand that this is a highly encrypted device and the printers remembers cartridge usage even when removed.
    I haven't done the test between two printers yet. In theory, you could remove the cartridge from one printer before it completes and that should preserve the counter at that state (there are incremental updates during prints!) for another printer. Question is, will the original printer re-write the data according to what it knows... and does it scan networked printers to confirm data.

    I have one question: How can you force firmware onto the internal SIM without completely disassembling the cube 3?
    A friend's unit failed the downgrade firmware effort and the systems just hangs now.
     
  3. LCBoliou

    LCBoliou New
    Builder

    Joined:
    Feb 8, 2015
    Messages:
    3
    Likes Received:
    0
    Wow, this about the most worthless 3D printer! I received my new $165 Cube 3 about 2 weeks ago, and print quality is generally terrible -- from a structural integrity standpoint. Print geometry is actually quite good, but filament to filament adhesion is terrible. As you cannot adjust hot end temperatures, PLA, especially on the perimeter of prints delaminates. It's not so noticeable on such things as the Benchy stress print, and actually did pretty well on that model. But, when I printed a somewhat rectangular, 6.5mm thick part for my Folgertech FT-5 (under construction), 2 of the sides were easy to simply pull apart. I used the highest, "almost solid" quality settings, and tried both 70 and 200 microns.

    The hardware for this little printer seems to be quite good, but the closed source "slicing" software and firmware are junk, and ruined an otherwise very decent 3D printer! As it is, I'm going to strip this thing down to it's basic frame, and use an MKS gen 1.1 board I have to drive the hardware. I will forget about the filament work-arounds and any other hacks that might modify the firmware to be able to use generic filament. The overall OS on this printer is terrible, and in my opinion, not worth trying to hack the MB.
     
  4. Tom Dirriwachter

    Tom Dirriwachter Well-Known
    Builder

    Joined:
    Aug 30, 2016
    Messages:
    284
    Likes Received:
    32
    Update, we got the printer apart without trouble. THANKS AGAIN FOR THIS POST!

    We looked at the SIM and found some garbled data.
    The firmware just needed to be copied and renamed, and some other files needed to be removed from the SIM.
    Persistence paid off. Once it booted cleanly, it downloaded and installed 1.14B again.
    I'm not sure these machines were meant to be downgrade.

    LC...
    I've learned you need to design thing with these limitations in mind.
    I've learned to "stitch" long lengths by drill small holes in them.
    It forces the slicer to stitch layers together.
     
  5. Rhwjfhdk

    Rhwjfhdk New
    Builder

    Joined:
    Nov 4, 2016
    Messages:
    1
    Likes Received:
    0
    You know instead of actually taking the printer apart you can just install the firmware you want to downgrade to on one USB flash drive and the current one the printer has on another one. Rename the older firmware you want to downgrade The printer to, to the current firmware's name (ex. V1.14B) and do the following steps. Insert the flash drive with the actual current software (v1.14B) or whatever your printer has as its current firmware. Go to firmware icon on your Cube 3, press the USB update icon, wait until it starts downloading to 5 % for example. Then take the flash drive out and put the other with the renamed older firmware version and hit retry to install the older firmware on to that. The location for these older firmware files are on http://cubify.s3.amazonaws.com To find the files scroll through the files (there's no user interface so hope ur not farsighted) and find cube3 firmware. To download them copy the section that starts from public for example copy this, public/cube3/firmware/cube_v1.10.ar and paste in the URL after.com with a /after the .com and press enter and ur file will begin downloading. Hope this helps avoid taking apart ur guys printers lol. If any of u find a way to crack the encryption of these firmware files to edit the cartridge status percentage of filament sections to allow the use of third party filament without any limits please post the file so we can finally have an open source Cube 3.
     
  6. Tom Dirriwachter

    Tom Dirriwachter Well-Known
    Builder

    Joined:
    Aug 30, 2016
    Messages:
    284
    Likes Received:
    32
    I did not know that. Nice to know.
    This particular printer went corrupt in the downgrade and did not perform any function although the top two levels of commands were available.
    Firmware updates hung at 0%.
    Going inside to restore "anything" was a priority.
     
  7. LCBoliou

    LCBoliou New
    Builder

    Joined:
    Feb 8, 2015
    Messages:
    3
    Likes Received:
    0
    I can see why so many people were angry, and determined the Cube 3 was more marketing than product. I've just had my second cartridge of PLA break inside the cartridge Bowden tube! Had I spent $999 for this pathetic excuse for a 3D printer, I would be furious! As it is, I'm tearing it down for a complete OS / controller replacement.
     
  8. supertechster

    Builder

    Joined:
    Mar 26, 2015
    Messages:
    5
    Likes Received:
    3
    Inside-tube filament breakage is common 'malady' for these CUBES and is a pain according to all that have experienced it - BUT when you get it reconfigured for RAMPS, it'll be sweet. Just being able to microstep x, y and Z axes AND adjust tip temp and extrusion rates alone will be a boon. That said, just disassemble and remove the part on the Printer-side (after heating it up) and then re-feed the cassette back into and thru to the head. Age is the cause...
     
  9. bolsoncerrado

    bolsoncerrado Well-Known
    Builder

    Joined:
    Nov 8, 2016
    Messages:
    229
    Likes Received:
    7
    I just got a Cube3D printer too as for $175 I think its unbeatable not to try hacking it lol

    So please keep us posted on the findings re fully open it (firmware, hardware and software speaking :))

    Running Octoprint on the small touch screen would be AWESOME! :D



    Ps. is it normal Cube3 prints right in the edge of the bed instead of CENTERED as in the software preview?
     
  10. bolsoncerrado

    bolsoncerrado Well-Known
    Builder

    Joined:
    Nov 8, 2016
    Messages:
    229
    Likes Received:
    7
    Ne1 seen this btw?

     
    Tom Dirriwachter likes this.
  11. bolsoncerrado

    bolsoncerrado Well-Known
    Builder

    Joined:
    Nov 8, 2016
    Messages:
    229
    Likes Received:
    7
    Also weird, if u read the comments, most chip hack techniques only work on the right cartidge side:

     
  12. bolsoncerrado

    bolsoncerrado Well-Known
    Builder

    Joined:
    Nov 8, 2016
    Messages:
    229
    Likes Received:
    7
    More on the chips:

    The filament levels are stored on a DS28E01-100 EEPROM chip with a SHA-1 encryption. Even if you were to break through that encryption, each chip has a unique 64-bit ROM registration number that is factory lasered into the chip. The printer is able to recognize which chips it has seen before and will know if it has been modified. 3D systems was really paranoid on losing money from this.
     
  13. advancedrescue

    Builder

    Joined:
    Oct 27, 2016
    Messages:
    22
    Likes Received:
    4
     
  14. advancedrescue

    Builder

    Joined:
    Oct 27, 2016
    Messages:
    22
    Likes Received:
    4
    Yeah I've run into this issue a lot already. Some cartridges don't seem to have issues while others constantly do. I believe it's partly to do with 3DS refilling cartridges people send back. The paper in the box the cartridge comes in ask for you to send it back. Then it's refilled and sold ago. Unclogging the ones I've had this happen too I've noticed they've been opened before. One even had a sharpie mark inside.
     
  15. advancedrescue

    Builder

    Joined:
    Oct 27, 2016
    Messages:
    22
    Likes Received:
    4
    Haven't had mine long but have done a lot of printing already. Ran into issues, but when it's not a cartridge that has given me issues it runs smooth. I can deff see myself doing some sort of swap in the future for it to run open source.
     
  16. bolsoncerrado

    bolsoncerrado Well-Known
    Builder

    Joined:
    Nov 8, 2016
    Messages:
    229
    Likes Received:
    7
    Now the printingontheedge thing got me worried.... i do recall the very first test print was on the edge too, then i sliced benchy and in the meantime upgraded firmware....but benchy got printed on the edge too :?
     
  17. jerdavis

    jerdavis New
    Builder

    Joined:
    Oct 25, 2016
    Messages:
    7
    Likes Received:
    2
    I had one part randomly get printed on the edge. Everything else has been centered. Not sure what happened there. Running latest firmware and cube print app on Mac OS right now.
     
  18. bolsoncerrado

    bolsoncerrado Well-Known
    Builder

    Joined:
    Nov 8, 2016
    Messages:
    229
    Likes Received:
    7
    Im on latest firmware and software as well...

    And I do understand why they discontinued them... First print out of the box is quite....shameful.

    [​IMG]
     
  19. bolsoncerrado

    bolsoncerrado Well-Known
    Builder

    Joined:
    Nov 8, 2016
    Messages:
    229
    Likes Received:
    7
    Its even worse when you remove it from the bed lol


    [​IMG]

    [​IMG]
     
  20. bolsoncerrado

    bolsoncerrado Well-Known
    Builder

    Joined:
    Nov 8, 2016
    Messages:
    229
    Likes Received:
    7
    From the Simplify3D forums, re hacking the CubePRO, may be we can learn from this too...

    And:

    Code:
    Hi jklino,
    this is our Marlin- configuartion_h
    
    #ifndef CONFIGURATION_H
    #define CONFIGURATION_H
    
    // This configuration file contains the basic settings.
    // Advanced settings can be found in Configuration_adv.h
    // BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration
    
    // User-specified version info of this build to display in [Pronterface, etc] terminal window during
    // startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
    // build by the user have been successfully uploaded into firmware.
    #define STRING_VERSION_CONFIG_H __DATE__ " " __TIME__ // build date and time
    #define STRING_CONFIG_H_AUTHOR "(none, default config)" // Who made the changes.
    
    // SERIAL_PORT selects which serial port should be used for communication with the host.
    // This allows the connection of wireless adapters (for instance) to non-default port pins.
    // Serial port 0 is still used by the Arduino bootloader regardless of this setting.
    #define SERIAL_PORT 0
    
    // This determines the communication speed of the printer
    //#define BAUDRATE 250000
    #define BAUDRATE 115200
    
    //// The following define selects which electronics board you have. Please choose the one that matches your setup
    // 10 = Gen7 custom (Alfons3 Version) "https://github.com/Alfons3/Generation_7_Electronics"
    
    // 11 = Gen7 v1.1, v1.2 = 11
    // 12 = Gen7 v1.3
    // 13 = Gen7 v1.4
    // 3 = MEGA/RAMPS up to 1.2 = 3
    // 33 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Bed)
    // 34 = RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Bed)
    // 35 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Fan)
    // 4 = Duemilanove w/ ATMega328P pin assignment
    // 5 = Gen6
    // 51 = Gen6 deluxe
    // 6 = Sanguinololu < 1.2
    // 62 = Sanguinololu 1.2 and above
    // 63 = Melzi
    // 64 = STB V1.1
    // 65 = Azteeg X1
    // 66 = Melzi with ATmega1284 (MaKr3d version)
    // 7 = Ultimaker
    // 71 = Ultimaker (Older electronics. Pre 1.5.4. This is rare)
    // 77 = 3Drag Controller
    // 8 = Teensylu
    // 80 = Rumba
    // 81 = Printrboard (AT90USB1286)
    // 82 = Brainwave (AT90USB646)
    // 9 = Gen3+
    // 70 = Megatronics
    // 701= Megatronics v2.0
    // 702= Minitronics v1.0
    // 90 = Alpha OMCA board
    // 91 = Final OMCA board
    // 301 = Rambo
    // 21 = Elefu Ra Board (v3)
    
    #ifndef MOTHERBOARD
    #define MOTHERBOARD 34
    #endif
    
    // Define this to set a custom name for your generic Mendel,
    // #define CUSTOM_MENDEL_NAME "This Mendel"
    
    // This defines the number of extruders
    #define EXTRUDERS 1
    
    //// The following define selects which power supply you have. Please choose the one that matches your setup
    // 1 = ATX
    // 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC)
    
    #define POWER_SUPPLY 1
    
    
    //===========================================================================
    //============================== Delta Settings =============================
    //===========================================================================
    // Enable DELTA kinematics
    //#define DELTA
    
    // Make delta curves from many straight lines (linear interpolation).
    // This is a trade-off between visible corners (not enough segments)
    // and processor overload (too many expensive sqrt calls).
    #define DELTA_SEGMENTS_PER_SECOND 200
    
    // Center-to-center distance of the holes in the diagonal push rods.
    #define DELTA_DIAGONAL_ROD 250.0 // mm
    
    // Horizontal offset from middle of printer to smooth rod center.
    #define DELTA_SMOOTH_ROD_OFFSET 175.0 // mm
    
    // Horizontal offset of the universal joints on the end effector.
    #define DELTA_EFFECTOR_OFFSET 33.0 // mm
    
    // Horizontal offset of the universal joints on the carriages.
    #define DELTA_CARRIAGE_OFFSET 18.0 // mm
    
    // Effective horizontal distance bridged by diagonal push rods.
    #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET)
    
    // Effective X/Y positions of the three vertical towers.
    #define SIN_60 0.8660254037844386
    #define COS_60 0.5
    #define DELTA_TOWER1_X -SIN_60*DELTA_RADIUS // front left tower
    #define DELTA_TOWER1_Y -COS_60*DELTA_RADIUS
    #define DELTA_TOWER2_X SIN_60*DELTA_RADIUS // front right tower
    #define DELTA_TOWER2_Y -COS_60*DELTA_RADIUS
    #define DELTA_TOWER3_X 0.0 // back middle tower
    #define DELTA_TOWER3_Y DELTA_RADIUS
    
    // Diagonal rod squared
    #define DELTA_DIAGONAL_ROD_2 pow(DELTA_DIAGONAL_ROD,2)
    
    //===========================================================================
    //=============================Thermal Settings ============================
    //===========================================================================
    //
    //--NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table
    //
    //// Temperature sensor settings:
    // -2 is thermocouple with MAX6675 (only for sensor 0)
    // -1 is thermocouple with AD595
    // 0 is not used
    // 1 is 100k thermistor - best choice for EPCOS 100k (4.7k pullup)
    // 2 is 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)
    // 3 is mendel-parts thermistor (4.7k pullup)
    // 4 is 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
    // 5 is 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan) (4.7k pullup)
    // 6 is 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
    // 7 is 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)
    // 71 is 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup)
    // 8 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
    // 9 is 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
    // 10 is 100k RS thermistor 198-961 (4.7k pullup)
    // 60 is 100k Maker's Tool Works Kapton Bed Thermister
    //
    // 1k ohm pullup tables - This is not normal, you would have to have changed out your 4.7k for 1k
    // (but gives greater accuracy and more stable PID)
    // 51 is 100k thermistor - EPCOS (1k pullup)
    // 52 is 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
    // 55 is 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan) (1k pullup)
    
    #define TEMP_SENSOR_0 6 //Düse=0.3/Filament=3.0mm
    #define TEMP_SENSOR_1 1
    #define TEMP_SENSOR_2 1
    #define TEMP_SENSOR_BED 5
    //#define TEMP_SENSOR_0 5
    //#define TEMP_SENSOR_1 5
    //#define TEMP_SENSOR_2 5
    //#define TEMP_SENSOR_BED 5
    
    // This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.
    //#define TEMP_SENSOR_1_AS_REDUNDANT
    #define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10
    
    // Actual temperature must be close to target for this long before M109 returns success
    #define TEMP_RESIDENCY_TIME 10 // (seconds)
    #define TEMP_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one
    #define TEMP_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.
    
    // The minimal temperature defines the temperature below which the heater will not be enabled It is used
    // to check that the wiring to the thermistor is not broken.
    // Otherwise this would lead to the heater being powered on all the time.
    #define HEATER_0_MINTEMP 5
    #define HEATER_1_MINTEMP 5
    #define HEATER_2_MINTEMP 5
    #define BED_MINTEMP 5
    
    // When temperature exceeds max temp, your heater will be switched off.
    // This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
    // You should use MINTEMP for thermistor short/failure protection.
    #define HEATER_0_MAXTEMP 275
    #define HEATER_1_MAXTEMP 275
    #define HEATER_2_MAXTEMP 275
    #define BED_MAXTEMP 150
    
    // If your bed has low resistance e.g. .6 ohm and throws the fuse you can duty cycle it to reduce the
    // average current. The value should be an integer and the heat bed will be turned on for 1 interval of
    // HEATER_BED_DUTY_CYCLE_DIVIDER intervals.
    //#define HEATER_BED_DUTY_CYCLE_DIVIDER 4
    
    // PID settings:
    // Comment the following line to disable PID and enable bang-bang.
    #define PIDTEMP
    #define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
    #define PID_MAX 255 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
    #ifdef PIDTEMP
    //#define PID_DEBUG // Sends debug data to the serial port.
    //#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
    #define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
    // is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
    #define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
    #define K1 0.95 //smoothing factor within the PID
    #define PID_dT ((16.0 * 8.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
    
    // If you are using a preconfigured hotend then you can use one of the value sets by uncommenting it
    // Ultimaker
    #define DEFAULT_Kp 21.99
    #define DEFAULT_Ki 1.64
    #define DEFAULT_Kd 73.87
    
    // Makergear
    // #define DEFAULT_Kp 7.0
    // #define DEFAULT_Ki 0.1
    // #define DEFAULT_Kd 12
    
    // Mendel Parts V9 on 12V
    // #define DEFAULT_Kp 63.0
    // #define DEFAULT_Ki 2.25
    // #define DEFAULT_Kd 440
    #endif // PIDTEMP
    
    // Bed Temperature Control
    // Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
    //
    // Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
    // If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz,
    // which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
    // This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
    // If your configuration is significantly different than this and you don't understand the issues involved, you probably
    // shouldn't use bed PID until someone else verifies your hardware works.
    // If this is enabled, find your own PID constants below.
    //#define PIDTEMPBED
    //
    //#define BED_LIMIT_SWITCHING
    
    // This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
    // all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
    // setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
    // so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
    #define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current
    
    #ifdef PIDTEMPBED
    //120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
    //from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
    #define DEFAULT_bedKp 10.00
    #define DEFAULT_bedKi .023
    #define DEFAULT_bedKd 305.4
    
    //120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
    //from pidautotune
    // #define DEFAULT_bedKp 97.1
    // #define DEFAULT_bedKi 1.41
    // #define DEFAULT_bedKd 1675.16
    
    // FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
    #endif // PIDTEMPBED
    
    
    
    //this prevents dangerous Extruder moves, i.e. if the temperature is under the limit
    //can be software-disabled for whatever purposes by
    #define PREVENT_DANGEROUS_EXTRUDE
    //if PREVENT_DANGEROUS_EXTRUDE is on, you can still disable (uncomment) very long bits of extrusion separately.
    #define PREVENT_LENGTHY_EXTRUDE
    
    #define EXTRUDE_MINTEMP 140
    #define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
    
    //===========================================================================
    //=============================Mechanical Settings===========================
    //===========================================================================
    
    // Uncomment the following line to enable CoreXY kinematics
    // #define COREXY
    
    // coarse Endstop Settings
    #define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
    
    #ifndef ENDSTOPPULLUPS
    // fine Enstop settings: Individual Pullups. will be ignored if ENDSTOPPULLUPS is defined
    // #define ENDSTOPPULLUP_XMAX
    // #define ENDSTOPPULLUP_YMAX
    // #define ENDSTOPPULLUP_ZMAX
    // #define ENDSTOPPULLUP_XMIN
    // #define ENDSTOPPULLUP_YMIN
    // #define ENDSTOPPULLUP_ZMIN
    #endif
    
    #ifdef ENDSTOPPULLUPS
    #define ENDSTOPPULLUP_XMAX
    #define ENDSTOPPULLUP_YMAX
    #define ENDSTOPPULLUP_ZMAX
    #define ENDSTOPPULLUP_XMIN
    #define ENDSTOPPULLUP_YMIN
    #define ENDSTOPPULLUP_ZMIN
    #endif
    
    // The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
    const bool X_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop. // cubepro
    const bool Y_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
    const bool Z_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
    const bool X_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
    const bool Y_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
    const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
    //#define DISABLE_MAX_ENDSTOPS
    //#define DISABLE_MIN_ENDSTOPS
    
    // Disable max endstops for compatibility with endstop checking routine
    #if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
    #define DISABLE_MAX_ENDSTOPS
    #endif
    
    // For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
    #define X_ENABLE_ON 0
    #define Y_ENABLE_ON 0
    #define Z_ENABLE_ON 0
    #define E_ENABLE_ON 0 // For all extruders
    
    // Disables axis when it's not being used.
    #define DISABLE_X false
    #define DISABLE_Y false
    #define DISABLE_Z true
    #define DISABLE_E false // For all extruders
    
    //#define INVERT_X_DIR false // for Mendel set to false, for Orca set to true
    //#define INVERT_Y_DIR true // for Mendel set to true, for Orca set to false
    //#define INVERT_Z_DIR false // for Mendel set to false, for Orca set to true
    #define INVERT_X_DIR false // for Mendel set to false, for Orca set to true //cubepro/TMC2100
    #define INVERT_Y_DIR true // for Mendel set to true, for Orca set to false //cubepro/TMC2100
    #define INVERT_Z_DIR false // for Mendel set to false, for Orca set to true
    #define INVERT_E0_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false //cubepro
    #define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
    #define INVERT_E2_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
    
    // ENDSTOP SETTINGS:
    // Sets direction of endstops when homing; 1=MAX, -1=MIN
    //#define X_HOME_DIR 1
    //#define Y_HOME_DIR -1
    //#define Z_HOME_DIR -1
    #define X_HOME_DIR -1 // cubepro
    #define Y_HOME_DIR -1
    #define Z_HOME_DIR -1
    #define min_software_endstops true // If true, axis won't move to coordinates less than HOME_POS.
    #define max_software_endstops true // If true, axis won't move to coordinates greater than the defined lengths below.
    // Travel limits after homing
    #define X_MAX_POS 245 //cubepro
    #define X_MIN_POS 0
    #define Y_MAX_POS 270 //cubepro
    #define Y_MIN_POS 0
    #define Z_MAX_POS 220
    #define Z_MIN_POS 0
    
    #define X_MAX_LENGTH (X_MAX_POS - X_MIN_POS)
    #define Y_MAX_LENGTH (Y_MAX_POS - Y_MIN_POS)
    #define Z_MAX_LENGTH (Z_MAX_POS - Z_MIN_POS)
    
    // The position of the homing switches
    //#define MANUAL_HOME_POSITIONS // If defined, MANUAL_*_HOME_POS below will be used
    //#define BED_CENTER_AT_0_0 // If defined, the center of the bed is at (X=0, Y=0)
    
    //Manual homing switch locations:
    // For deltabots this means top and center of the cartesian print volume.
    #define MANUAL_X_HOME_POS 0
    #define MANUAL_Y_HOME_POS 0
    #define MANUAL_Z_HOME_POS 0
    //#define MANUAL_Z_HOME_POS 402 // For delta: Distance between nozzle and print surface after homing.
    
    //// MOVEMENT SETTINGS
    #define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
    //#define HOMING_FEEDRATE {50*60, 50*60, 4*60, 0} // set the homing speeds (mm/min)
    //#define HOMING_FEEDRATE {50*80, 50*80, 4*80, 0} // set the homing speeds (mm/min) //Sparkcube 05082014
    #define HOMING_FEEDRATE {2500, 2500, 1500, 0} // set the homing speeds (mm/min) //CubePro
    
    // default settings
    
    //#define DEFAULT_AXIS_STEPS_PER_UNIT {80.315,80.315,3200.0/1.25,880} // default steps per unit for Ultimaker
    //#define DEFAULT_AXIS_STEPS_PER_UNIT {79.97,85.375,2154.88,763.8} // 1.75mm-0.3mm Sparkcube/15072014
    #define DEFAULT_AXIS_STEPS_PER_UNIT {86.220,86.320,1054.703,214.09167} // 1.75mm-0.4mm direct drive
    //#define DEFAULT_AXIS_STEPS_PER_UNIT {174.139,174.098,1074.5706,174.6988} // 1.75mm-0.4mm cubepro_01072015/DRV8825
    //#define DEFAULT_AXIS_STEPS_PER_UNIT {159.99,169.82,2118.050,720.566} // 1.75mm-0.4mm Sparkcube/21012015/0,9stepper
    #define DEFAULT_MAX_FEEDRATE {500, 500, 10, 25} // (mm/sec)
    #define DEFAULT_MAX_ACCELERATION {9000,9000,100,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
    
    //#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves //Sparkcube 05082014
    //#define DEFAULT_RETRACT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for retracts //Sparkcube 05082014
    #define DEFAULT_ACCELERATION 2000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves //cubepro
    #define DEFAULT_RETRACT_ACCELERATION 2000 // X, Y, Z and E max acceleration in mm/s^2 for retracts //cubepro
    
    // Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
    // The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
    // For the other hotends it is their distance from the extruder 0 hotend.
    // #define EXTRUDER_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis
    // #define EXTRUDER_OFFSET_Y {0.0, 5.00} // (in mm) for each extruder, offset of the hotend on the Y axis
    
    // The speed change that does not require acceleration (i.e. the software might assume it can be done instantaneously)
    #define DEFAULT_XYJERK 20.0 // (mm/sec)
    #define DEFAULT_ZJERK 0.4 // (mm/sec)
    #define DEFAULT_EJERK 5.0 // (mm/sec)
    
    //===========================================================================
    //=============================Additional Features===========================
    //===========================================================================
    
    // EEPROM
    // the microcontroller can store settings in the EEPROM, e.g. max velocity...
    // M500 - stores paramters in EEPROM
    // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
    // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
    //define this to enable eeprom support
    //#define EEPROM_SETTINGS
    //to disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out:
    // please keep turned on if you can.
    //#define EEPROM_CHITCHAT
    
    // Preheat Constants
    #define PLA_PREHEAT_HOTEND_TEMP 210 //cubepro
    #define PLA_PREHEAT_HPB_TEMP 60 //cubepro
    #define PLA_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
    
    #define ABS_PREHEAT_HOTEND_TEMP 240
    #define ABS_PREHEAT_HPB_TEMP 100
    #define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
    
    //LCD and SD support
    //#define ULTRA_LCD //general lcd support, also 16x2
    //#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
    //#define SDSUPPORT // Enable SD Card Support in Hardware Console
    //#define SDSLOW // Use slower SD transfer mode (not normally needed - uncomment if you're getting volume init error)
    
    //#define ULTIMAKERCONTROLLER //as available from the ultimaker online store.
    //#define ULTIPANEL //the ultipanel as on thingiverse
    
    // The MaKr3d Makr-Panel with graphic controller and SD support
    // http://reprap.org/wiki/MaKr3d_MaKrPanel
    //#define MAKRPANEL
    
    // The RepRapDiscount Smart Controller (white PCB) // cubepro
    // http://reprap.org/wiki/RepRapDiscount_Smart_Controller
    //#define REPRAP_DISCOUNT_SMART_CONTROLLER
    
    // The GADGETS3D G3D LCD/SD Controller (blue PCB)
    // http://reprap.org/wiki/RAMPS_1.3/1.4_GA ... with_Panel
    //#define G3D_PANEL
    
    // The RepRapDiscount FULL GRAPHIC Smart Controller (quadratic white PCB)//Sparkcube
    // http://reprap.org/wiki/RepRapDiscount_F ... Controller
    //
    // ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
    #define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER // Sparkcube
    
    
    // The RepRapWorld REPRAPWORLD_KEYPAD v1.1
    // http://reprapworld.com/?products_detail ... =1591_1626
    //#define REPRAPWORLD_KEYPAD
    //#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0 // how much should be moved when a key is pressed, eg 10.0 means 10mm per click
    
    // The Elefu RA Board Control Panel
    // http://www.elefu.com/index.php?route=pr ... duct_id=53
    // REMEMBER TO INSTALL LiquidCrystal_I2C.h in your ARUDINO library folder: https://github.com/kiyoshigawa/LiquidCrystal_I2C
    //#define RA_CONTROL_PANEL
    
    //automatic expansion
    #if defined (MAKRPANEL)
    #define DOGLCD
    #define SDSUPPORT
    #define ULTIPANEL
    #define NEWPANEL
    #define DEFAULT_LCD_CONTRAST 17
    #endif
    
    #if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
    #define DOGLCD
    #define U8GLIB_ST7920
    #define REPRAP_DISCOUNT_SMART_CONTROLLER
    #endif
    
    #if defined(ULTIMAKERCONTROLLER) || defined(REPRAP_DISCOUNT_SMART_CONTROLLER) || defined(G3D_PANEL)
    #define ULTIPANEL
    #define NEWPANEL
    #endif
    
    #if defined(REPRAPWORLD_KEYPAD)
    #define NEWPANEL
    #define ULTIPANEL
    #endif
    #if defined(RA_CONTROL_PANEL)
    #define ULTIPANEL
    #define NEWPANEL
    #define LCD_I2C_TYPE_PCA8574
    #define LCD_I2C_ADDRESS 0x27 // I2C Address of the port expander
    #endif
    
    //I2C PANELS
    
    //#define LCD_I2C_SAINSMART_YWROBOT
    #ifdef LCD_I2C_SAINSMART_YWROBOT
    // This uses the LiquidCrystal_I2C library ( https://bitbucket.org/fmalpartida/new-l ... /wiki/Home )
    // Make sure it is placed in the Arduino libraries directory.
    #define LCD_I2C_TYPE_PCF8575
    #define LCD_I2C_ADDRESS 0x27 // I2C Address of the port expander
    #define NEWPANEL
    #define ULTIPANEL
    #endif
    
    // PANELOLU2 LCD with status LEDs, separate encoder and click inputs
    //#define LCD_I2C_PANELOLU2
    #ifdef LCD_I2C_PANELOLU2
    // This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 )
    // Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.
    // (v1.2.3 no longer requires you to define PANELOLU in the LiquidTWI2.h library header file)
    // Note: The PANELOLU2 encoder click input can either be directly connected to a pin
    // (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).
    #define LCD_I2C_TYPE_MCP23017
    #define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander
    #define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD
    #define NEWPANEL
    #define ULTIPANEL
    #endif
    
    // Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
    //#define LCD_I2C_VIKI
    #ifdef LCD_I2C_VIKI
    // This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 )
    // Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.
    // Note: The pause/stop/resume LCD button pin should be connected to the Arduino
    // BTN_ENC pin (or set BTN_ENC to -1 if not used)
    #define LCD_I2C_TYPE_MCP23017
    #define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander
    #define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD (requires LiquidTWI2 v1.2.3 or later)
    #define NEWPANEL
    #define ULTIPANEL
    #endif
    
    #ifdef ULTIPANEL
    // #define NEWPANEL //enable this if you have a click-encoder panel
    #define SDSUPPORT
    #define ULTRA_LCD
    #ifdef DOGLCD // Change number of lines to match the DOG graphic display
    #define LCD_WIDTH 20
    #define LCD_HEIGHT 5
    #else
    #define LCD_WIDTH 20
    #define LCD_HEIGHT 4
    #endif
    #else //no panel but just lcd
    #ifdef ULTRA_LCD
    #ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
    #define LCD_WIDTH 20
    #define LCD_HEIGHT 5
    #else
    #define LCD_WIDTH 16
    #define LCD_HEIGHT 2
    #endif
    #endif
    #endif
    
    // default LCD contrast for dogm-like LCD displays
    #ifdef DOGLCD
    # ifndef DEFAULT_LCD_CONTRAST
    # define DEFAULT_LCD_CONTRAST 32
    # endif
    #endif
    
    // Increase the FAN pwm frequency. Removes the PWM noise but increases heating in the FET/Arduino
    //#define FAST_PWM_FAN
    
    // Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
    // which is not *** annoying as with the hardware PWM. On the other hand, if this frequency
    // is too low, you should also increment SOFT_PWM_SCALE.
    //#define FAN_SOFT_PWM
    
    // Incrementing this by 1 will double the software PWM frequency,
    // affecting heaters, and the fan if FAN_SOFT_PWM is enabled.
    // However, control resolution will be halved for each increment;
    // at zero value, there are 128 effective control positions.
    #define SOFT_PWM_SCALE 0
    
    // M240 Triggers a camera by emulating a Canon RC-1 Remote
    // Data from: http://www.doc-diy.net/photo/rc-1_hacked/
    // #define PHOTOGRAPH_PIN 23
    
    // SF send wrong arc g-codes when using Arc Point as fillet procedure
    //#define SF_ARC_FIX
    
    // Support for the BariCUDA Paste Extruder.
    //#define BARICUDA
    
    /*********************************************************************\
    * R/C SERVO support
    * Sponsored by TrinityLabs, Reworked by codexmas
    **********************************************************************/
    
    // Number of servos
    //
    // If you select a configuration below, this will receive a default value and does not need to be set manually
    // set it manually if you have more servos than extruders and wish to manually control some
    // leaving it undefined or defining as 0 will disable the servo subsystem
    // If unsure, leave commented / disabled
    //
    //#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command
    
    // Servo Endstops
    //
    // This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
    // Use M206 command to correct for switch height offset to actual nozzle height. Store that setting with M500.
    //
    //#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
    //#define SERVO_ENDSTOP_ANGLES {0,0, 0,0, 70,0} // X,Y,Z Axis Extend and Retract angles
    
    #include "Configuration_adv.h"
    #include "thermistortables.h"
    
    #endif //__CONFIGURATION_H
     
  21. bolsoncerrado

    bolsoncerrado Well-Known
    Builder

    Joined:
    Nov 8, 2016
    Messages:
    229
    Likes Received:
    7
    So where did everyone go?
     
  22. Tom Dirriwachter

    Tom Dirriwachter Well-Known
    Builder

    Joined:
    Aug 30, 2016
    Messages:
    284
    Likes Received:
    32
    Hello Bolsoncerrado. Thank you for the great and simple hack.
    I am not sure I understand the process of switching... or the logic behind each switch back and forth.
    Could you expand on this thought with a table of some kind?

    I do understand the printer and the security feature reasonably well.
    I also know that if you mess up switching, you could end up re-writing the good chip.
    I would like something very clear to understand the switching process you are using.
     
  23. bolsoncerrado

    bolsoncerrado Well-Known
    Builder

    Joined:
    Nov 8, 2016
    Messages:
    229
    Likes Received:
    7
    The hack above is not mine unfortunately

    +But theres a youtube reply to that video stating its a fake....
     
  24. advancedrescue

    Builder

    Joined:
    Oct 27, 2016
    Messages:
    22
    Likes Received:
    4
    Hey man, I'm back. Fixing to fool around with my printer now and see if it's back printing center
     
  25. braksmith

    braksmith New
    Builder

    Joined:
    Oct 19, 2016
    Messages:
    27
    Likes Received:
    8
    I was able to get the switching back and forth between 2 chips to work, I kept the ground wires connected at all times, and just switched the positive side of the carts (which is the left side pin if you are looking at the cartridge [the bigger of the 2 pins]).

    BUT I got fed up with the slow speed, and removed the motherboard and replaced it with a ramps 1.4. Just finished wiring it, and all the motors/fans/extruders are working. Going to try to calibrate it and do a test print.

    I logged onto this forum to just thank the original poster for the info.


    THANKS
     
  26. bolsoncerrado

    bolsoncerrado Well-Known
    Builder

    Joined:
    Nov 8, 2016
    Messages:
    229
    Likes Received:
    7
    Wow braksmith thats good news if you can post pics of your setup to help others....and the Marlin you used ;)
     
  27. jerdavis

    jerdavis New
    Builder

    Joined:
    Oct 25, 2016
    Messages:
    7
    Likes Received:
    2
    What did you do to your ramps to get it working at 24v? Car fuse? bypass the lower voltage fuse? What firmware are you using?

    When you were using the cartridge switch were you able to use that with the latest firmware or did you have to downgrade?
     
  28. bolsoncerrado

    bolsoncerrado Well-Known
    Builder

    Joined:
    Nov 8, 2016
    Messages:
    229
    Likes Received:
    7
    I subscribe to the jerdavis questions as well! lol
     
  29. jacksonj

    jacksonj New
    Builder

    Joined:
    Nov 10, 2016
    Messages:
    3
    Likes Received:
    1
    have u guys made the firmware hack yet for disabling cartridge percentage writing
     
  30. jacksonj

    jacksonj New
    Builder

    Joined:
    Nov 10, 2016
    Messages:
    3
    Likes Received:
    1
    Let's try to hack the firmware it's self instead of actually taking apart the printer
     

Share This Page

  1. This site uses cookies to help personalise content, tailor your experience and to keep you logged in if you register.
    By continuing to use this site, you are consenting to our use of cookies.
    Dismiss Notice